Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode.
نویسندگان
چکیده
A potentiometric enzyme electrode for the direct measurement of organophosphate (OP) nerve agents was developed. The basic element of this enzyme electrode was a pH electrode modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking OPH with bovine serum albumin (BSA) and glutaradehyde. OPH catalyses the hydrolysis of organophosphorus pesticides to release protons, the concentration of which is proportional to the amount of hydrolysed substrate. The sensor signal and response time was optimized with respect to the buffer pH, ionic concentration of buffer, temperature, and units of OPH immobilized using paraoxon as substrate. The best sensitivity and response time were obtained using a sensor constructed with 500 IU of OPH and operating in pH 8.5, 1 mM HEPES buffer. Using these conditions, the biosensor was used to measure as low as 2 microM of paraoxon, ethyl parathion, methyl parathion and diazinon. The biosensor was completely stable for at least one month when stored in pH 8.5, 1 mM HEPES + 100 mM NaCl buffer at 4 degrees C.
منابع مشابه
Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode.
A potentiometric microbial biosensor for the direct measurement of organophosphate (OP) nerve agents was developed by modifying a pH electrode with an immobilized layer of Escherichia coli cells expressing organophosphorus hydrolase (OPH) on the cell surface. OPH catalyzes the hydrolysis of organophosporus pesticides to release protons, the concentration of which is proportional to the amount o...
متن کاملFlow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents.
A flow injection amperometric biosensor for the determination of organophosphate nerve agents was developed. The biosensor incorporated an immobilized enzyme reactor that contains the enzyme organophosphorus hydrolase covalently immobilized on activated aminopropyl controlled pore glass beads and an electrochemical flow-through detector containing carbon paste working electrode, a silver/silver...
متن کاملFiber-optic enzyme biosensor for direct determination of organophosphate nerve agents.
A fiber-optic enzyme biosensor for the direct measurement of organophosphate nerve agents was developed. The basic element of this biosensor is organophosphorus hydrolase immobilized on a nylon membrane and attached to the common end of a bifurcated optical fiber bundle. The enzyme catalyzes the hydrolysis of organophosphate compounds to form stoichiometric amounts of chromophoric products that...
متن کاملEnzyme Biosensor for Determination of Organophosphates
A potentiometric enzyme biosensor for the direct measurement of organophosphate pesticides was developed. The basic element of this enzyme biosensor was a pH electrode modified with an immobilized organophosphorus hydrolase layer formed by cross-linking OPH with bovine serum albumin and glutaraldehyde. Organophosphorus hydrolase catalyzes the hydrolysis of organophosporus pesticides to release ...
متن کاملTowards a Capacitive Enzyme Sensor for Direct Determination of Organophosphorus Pesticides: Fundamental Studies and Aspects of Development
The realisation of a miniaturised potentiometric enzyme biosensor is presented. The biosensor chip utilises the enzyme organophosphorus hydrolase (OPH) for the direct determination of pesticides. The transducer structure of the sensor chip consists of a pHsensitive capacitive electrolyte-insulator-semiconductor (EIS) structure that reacts towards pH changes caused by the OPH-catalysed hydrolysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 14 1 شماره
صفحات -
تاریخ انتشار 1999